UA-45667900-1
Showing posts with label pioglitazone. Show all posts
Showing posts with label pioglitazone. Show all posts

Friday 19 January 2024

Cerebral Folate Deficiency – increasing cerebral folate without increasing plasma/blood folate, via activating the reduced folate carrier (RFC)

 


Source: https://autism.fratnow.com/blog/folate-transport-systems-i-transmembrane-carriers/


Two readers of this blog have been telling me about the fundamental role of brain energy and metabolism in autism. Marco sent me a book called Brain Energy by a psychiatrist at the Harvard Medical School. He stumbled upon this subject when he encouraged a patient to lose weight using the ketogenic diet. As well as losing weight, the patient’s decades-long psychiatric disorders seemed to vanish. The author, Dr Palmer, now believes that many of his patients actually have metabolic disorders as the underlying basis of their psychiatric symptoms. 

Our reader Natasa is approaching with a similar idea, essentially that autism features a brain running on empty.

Today’s post is about increasing the level of folate within the brain, by targeting similar metabolic pathways to those that will boost “brain energy.”

Low levels of folate within the brain will cause varying degrees of neurological disorder.

There are three ways folate can cross into the brain.

1.     Folate receptor alpha (FRA)

2.     Proton-coupled folate transporter (PCFT)

3.     Reduced folate carrier (RFC)

Autoantibodies to the FRA have been linked to neurodevelopmental diseases, particularly cerebral folate deficiency, schizophrenia and autism. Recent studies have shown that these neurodevelopmental disorders can be treated with folinic acid (leucovorin).

Dr Frye, Professor Ramaekers and others are targeting the problem of low folate in the brain by supercharging the level of folate in the bloodstream and hoping more squeezes through the blood brain barrier.

In my previous post I mentioned that Agnieszka has pointed out the idea of using the supplement PQQ. This targets the third transport mechanism above, it is aiming to get more folate across via  the Reduced Folate Carrier (RFC).

Somebody recently wrote their PhD thesis on exactly this topic:- 

Regulation of Folate Transport at the Blood-Brain Barrier: A Novel Strategy for the Treatment of Childhood Neurological Disorders Associated with Cerebral Folate Deficiency

Camille Alam, Department of Pharmaceutical Sciences, University of Toronto 

Additionally, we provided in vitro and in vivo evidence that RFC expression and transport activity is inducible by another transcription factor, NRF-1. These findings demonstrate that augmenting RFC functional expression through interaction with specific transcription factors could constitute a novel strategy for enhancing brain folate delivery. Modulating folate uptake at the BBB may have clinical significance due to the lack of established optimal therapy for neurometabolic disorders caused by loss of FRα or PCFT function. 

What Camille is saying is that if folate transport mechanism number 1 and/or number 2 are not working, we can reinvigorate mechanism number 3.

So if you have Dr Frye’s folate receptor antibodies, or PCFT isn’t working then you might focus on Reduced Folate Carrier (RFC).

The good news is that we have lots of ways to target Reduced Folate Carrier (RFC).

We do not, it seems, have any clever ways to target PCFT. 

NRF-1 and PGC1-alpha

There is a lot in this blog about PGC1-alpha, because it is the master regulator for biogenesis of mitochondria.

All those people with impaired “brain energy” would love to activate PGC1-alpha.

NRF-1 is an activator of mitochondrial respiratory chain genes. NRF-1 specifically targets genes encoding subunits of the mitochondrial respiratory chain complexes, particularly complexes I, III, and IV. By binding to their promoters, NRF-1 directly stimulates their transcription, leading to increased synthesis of these critical protein components and enhanced oxidative phosphorylation (OXPHOS) capacity.

Synergy between NRF-1 and PGC-1alpha

PGC-1alpha acts as the upstream regulator. Various stimuli, such as exercise, cold exposure, and certain hormones, can trigger PGC-1alpha expression. Once activated, PGC-1alpha directly interacts with and co-activates NRF-1, enhancing its binding to target gene promoters and amplifying its transcriptional activity.

NRF-1 as the downstream effector.  NRF-1 fine-tunes the expression of specific mitochondrial genes, ensuring a balanced and efficient OXPHOS system. This synergy between PGC-1alpha and NRF-1 optimizes mitochondrial function and cellular energy production.

So for Natasa, trying to boost energy production in the brain and in the rest of the body, it would be ideal to have more NRF-1 and more PGC-1alpha

What has optimized mitochondrial function got to do with more folate in the brain?

It turns out that you can increase expression of Reduced Folate Carrier (RFC) via activating NRF-1 and/or PGC1alpha.

So what is good for your brain energy is likely to also be good for your brain folate.

Nuclear respiratory factor 1 (NRF-1) upregulates the expression and function of reduced folate carrier (RFC) at the blood-brain barrier

Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders. Our group has reported that upregulation of RFC at the blood-brain barrier (BBB) through interactions with specific transcription factors, that is, vitamin D receptor (VDR) could increase brain folate delivery. This study investigates the role of nuclear respiratory factor 1 (NRF-1) in the regulation of RFC at the BBB. Activation of NRF-1/PGC-1α signaling through treatment with its specific ligand, pyrroloquinoline quinone (PQQ), significantly induced RFC expression and transport activity in hCMEC/D3 cells. In contrast, transfection with NRF-1 or PGC-1α targeting siRNA downregulated RFC functional expression in the same cell system. Applying chromatin immunoprecipitation (ChIP) assay, we further demonstrated that PQQ treatment increased NRF-1 binding to putative NRF-1 binding sites within the SLC19A1 promoter, which encodes for RFC. Additionally, in vivo treatment of wild type mice with PQQ-induced RFC expression in isolated mouse brain capillaries. Together, these findings demonstrate that NRF-1/PGC-1α activation by PQQ upregulates RFC functional expression at the BBB and could potentially enhance brain folate uptake.

The hugely simple intervention mentioned above is to just take vitamin D. This has nothing to do with brain energy.

Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha

Folates are critical for brain development and function. Abnormalities in brain folate transport have been implicated in a number of childhood neurodevelopmental disorders, including cerebral folate deficiency syndrome, hereditary folate malabsorption, and autism spectrum disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. In this study, we demonstrate that functional expression of the folate transporter, reduced folate carrier, at the blood–brain barrier and its upregulation by the vitamin D nuclear receptor can remarkably increase folate transport to the brain. These findings provide a strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by folate transport defects.

 Low vitamin D correlates with poor health, dementia, and death from all causes

Taking vitamin D has become popular in recent years.

A correlation does not guarantee causality.  It was thought that vitamin D might be the silver bullet to improved health in older people. It has not proved to be.

Low vitamin D also correlates with less time outdoors, doing some physical activity. Taking vitamin D does not mean you will live longer, but we know for sure that exercise improves many medical concerns that will improve healthy life expectancy.

The concern many people now have regarding skin cancer leads to some healthy active people having low vitamin D. Put on that sunscreen and your exposed skin will not be able to produce your vitamin D.

Vitamin D is important to health and is easy to maintain in the normal range, but it is just one element of good health. It might be one way to increase folate in the brain, for those who need it. 

 

Conclusion

How do you increase folate in the brain?

The obvious way is to put more folate in your blood, this is the standard therapy. You either take calcium folinate tablets or, very rarely, the more potent infusions.

If you have antibodies blocking transport via FRA, you could follow the hypothesis that these antibodies are from a reaction to cow’s milk and try going dairy-free. There is a complex relationship between milk and folate receptor alpha antibodies (FRAA), but direct evidence of milk causing FRAA production is limited.

Milk, particularly cow's milk, contains proteins similar to folate receptor alpha found in humans. Some individuals, mainly those with a genetic predisposition, could develop FRAA that cross-react with these milk proteins. This cross-reactivity would not necessarily mean the milk directly caused FRAA production but might trigger an existing immune response. Some studies, though not all, have found an association between higher milk consumption and increased FRAA levels.

If you want to increase folate transport via our third mechanism, Reduced Folate Carrier (RFC) you have many options:

The obvious first step is to take a vitamin D supplement to raise levels to the high end of normal. This can be done by taking a larger supplement just once a week, because vitamin D has a long half-life.

As you can see from the study below in children there is a correlation between low vitamin D and low folate in children.

 

Evaluation of correlation between vitamin D with vitamin B12 and folate in children

The present study reported a positive correlation between vitamin D and vitamin B12 and folate levels. Regular measurement of these two micronutrient levels in children with vitamin D deficiency is important for public health.

Vitamin D is low in much of the population, even more so in wintertime. It seems particularly low in children with autism, perhaps because they are spending less time playing outside than other children.


Activate NRF-1 and/or PGC1alpha:

1.     Exercise, particularly endurance training

2.     PQQ supplement

3.     Perhaps resveratrol/pterostilbene

4.     Butyric acid / sodium butyrate

5.     The very safe old drug Metformin

6.     Other type 2 diabetes drugs like Pioglitazone

Metformin has been shown to raise IQ in Fragile-X by about 10 points and has a range of metabolic benefits and even cancer preventative effects. This common diabetes medication primarily targets AMPK, an energy sensor molecule upstream of PGC-1alpha. By activating AMPK, metformin indirectly stimulates PGC-1alpha and subsequently NRF1, leading to enhanced mitochondrial function.

Pioglitazone has been researched in autism and is my choice for peak risk spring/summer aggression and self-injury. Pioglitazone can potentially upregulate PGC-1alpha expression through several pathways:

                    Pioglitazone activates AMPK, an important energy sensor molecule. AMPK can then stimulate PGC-1alpha expression through various signaling pathways.

                    Pioglitazone activates PPAR-gamma and PPAR-gamma directly interacts with PGC-1alpha, potentially increasing its activity.

I think Metformin has a better safety profile than Pioglitazone and so better for every day use.

Butyric acid does have the potential to activate PGC-1alpha. Butyric acid is produced in the gut by fermentation. You need “good” bacteria and fiber. People with healthy diet naturally produce it. You can also buy it as a supplement (sodium butyrate) since it has numerous benefits – everything from gut health, bone health to a tight blood brain barrier.

According to a doctor I was talking to recently, nobody wants to hear that exercise is a key part of health. It is free and the side effects are generally all good ones. Endurance exercise will boost NRF1 and PGC1alpha. Many people with autism are overweight, often due to the psychiatric drugs they have been put on.

Sirtuin activators boost NRF1 and PGC1 alpha. There are drugs and foods which can do this, but a potent way is through exercise.

I hope Dr Frye is checking his patients’ vitamin D levels and supplementing to the safe upper limit.

Those taking I/V calcium folinate might want to look at the more potent ways to activate NRF1 and/or PGC1alpha.

 



Monday 16 August 2021

Pioglitazone for Autism and Specifically Summertime Raging and Verapamil-responsive Autism?

 


Adult-sized people with autism can cause property damage and much worse.


I am told that summertime raging is a common problem encountered by neurologists, but it remains poorly understood and usually remains untreated.

The most common worry for parents of toddlers diagnosed with severe autism is their lack of speech.

By the time these children reach adulthood, the biggest worry for parents is often aggression and self-injury. Often it is the mother who faces the worst episodes of aggression, which is a really cruel turn of events.

Aggression is usually not present in young children with autism, in some people it never develops, but in others it later becomes established as a learned behavior and then you are stuck with how to deal with it.

One of my own therapy targets has long been to improve cognitive function; this can indeed be achieved and then you can improve important daily living skills (adaptive function). Some steps that you can take to improve cognition, and indeed speech, have a downside in that they increase anxiety, which may lead to aggression. Calcium Folinate (Leucovorin) does cause aggression in a significant minority of people.  I think that low dose Roflumilast (60mcg) is cognitive enhancing, as proposed by the researchers at 100mcg, but it does seem to increase edginess/anxiety. DMF (Dimethyl fumarate) increases alertness, which is a good thing, but too much alertness will make you anxious.

When dealing with a full sized adult, which is more important, increased cognition/speech or avoiding explosive aggression?

Clearly there is a need for a compromise.

In adults with severe autism, living at home, entirely extinguishing aggressive behavior looks like the number one treatment goal.

For children in mainstream school, following the regular curriculum, cognitive function has to be a top priority.  Fortunately, this is our case, but only after starting Bumetanide therapy in 2012.

It looks like you can potentially have the best of both worlds - increased IQ and adaptive function, but without aggressive behavior. That is my own experience, but it was not simple.

Pioglitazone has been covered quite extensively in this blog and it is again featuring in the research. Pioglitazone is an interesting old drug used to treat people with type 2 diabetes; the phase 2 trial for autism has been completed.  I doubt there will be a phase 3 trial due to the high costs. Pioglitazone is broadly anti-inflammatory; it reduces the pro-inflammatory cytokine IL-6 and increases the anti-inflammatory cytokine IL-10.

We have seen in early posts how important is IL-6 and that it plays a key role in both allergy and even how milk teeth roots “dissolve” and then permanent teeth erupt. This transition to permanent teeth is another common cause of raging in autism, in our case it was mostly wintertime raging. 

IL-6, either directly or indirectly, seems to negatively affect behavior.

 

PPAR gamma

In earlier posts there was a lot about the various PPARs. These are used in medicine as targets to treat conditions like high cholesterol and type 2 diabetes.

Resveratrol and Pterostilbene are the OTC supplements that some readers are using. Sytrinol is another such supplement, but its cognitive benefit unfortunately just lasts a few days.

Here is a relatively recent paper on the subject, for those seeking the details. 

 

Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder

 

Or just look up the old posts in this blog:- 


https://epiphanyasd.blogspot.com/search/label/PPAR%CE%B3


PPARs are rather complicated, but do seem to be very relevant.  For example, the master regulator of mitochondrial biogenesis, something called PGC-1 alpha, is activated by PPAR gamma. If you have mitochondrial dysfunction that included a reduced number of mitochondria, you might want to make more mitochondria. A PPAR gamma agonist might be beneficial.

Dysregulation of PGC-1 alpha is associated with neurodegenerative and metabolic disorders including Parkinson's, Alzheimer's and Huntington's.

Outside this blog, there is some interest in PGC-1 alpha and autism, particularly in connection with oxidative stress and mitochondrial dysfunction.

 

“In conclusion, we demonstrated mitochondrial oxidative stress may affect a significant subgroup of ASD children and that the SIRT1/PGC-1α signaling pathway may be a promising medical treatment for ASD.”

Source: Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder


It does look like PPARs can be targeted and provide a benefit for at least some types of autism. My choice is Pioglitazone.

 

Dumber in the Summer

In parallel with summertime raging comes the phenomenon I called “Dumber in the Summer”, where cognitive function regresses.

Monty’s assistant told me recently there is no “Dumber in the Summer” this year, and I opened my medicine cupboard and explained why this is indeed the case.

At least in our case, when you resolve summertime raging, you also protect against cognitive regression. That therapy involves Verapamil, Pioglitazone and allergy therapies, Dymista spray (azelastine + fluticasone) plus Ceterizine and Clemastine. Clemastine also has the pro-myelination effect and stabilizes microglia.

 

Pioglitazone Side effects

In the stage 2 trials for autism doses of 0.25 mg/kg, 0.5 mg/kg and 0.75 mg/kg were all found to be safe and well tolerated.

As a summertime add-on therapy it appears very well tolerated.

In adults with type 2 diabetes, who will tend to be overweight and not so healthy, there are common side effects.  At one point, it was thought that there was an association between this drug and bladder cancer. Now this is thought not to be the case.

For adults with severe untreated autism, who are aggressive and self-injure, these behaviors very much limit where they can live and what they can do during the day. Life expectancy is also severely reduced. If Pioglitazone can help control these behaviors, some side effects are likely a price worth paying. 

 

Conclusion

Pioglitazone, by the standards of autism drugs, has plenty of evidence in the literature, regarding both mouse models and humans, to support an n=1 trial.  It addresses neuro-inflammation, one key feature of autism and it has beneficial effects on mitochondria.

Pioglitazone abolishes autistic-like behaviors via the IL-6 pathway

In a small cohort of autistic children, daily treatment with pioglitazone eased some autistic behaviors, such as irritability, lethargy, stereotypy, and hyperactivity, without significant side effects

 pioglitazone treatment inhibits the secretion of proinflammatory factors, such as nitric oxide and IL-6, and enhances the levels of the secretion of anti-inflammatory factors IL-4 and IL-10. Therefore, considering the results of Qiu and Li and our present findings, pioglitazone acted to benefit autistic-like behaviors possibly via the inhibition of IL-6 secretion in astrocytes stimulated by LPS, which inhibited the neuroinflammatory response.

 

I think for people whose child with autism has a behavioural or cognitive regression in summer, there is good reason to expect a benefit.  They very likely have allergies or other autoimmune conditions.

For people who deal with aggression and self-injury in a person who responds partially, but not 100%, to Verapamil, they may find that Pioglitazone helps to complete their anti-aggression therapy.

Our doctor reader Agnieszka did her best to collect case studies of people with autism responsive to Verapamil, but not enough parents wanted to participate.

Based on the comments section in this blog, it would look like our reader George in Romania has a son whose son’s aggression is reduced by Verapamil.  If some aggression persists in summer, I think there is a very good chance that Pioglitazone will help reduce it.  George did recently share with us the the anti-inflammatory Probiotic Lactobacillus Plantarum 299v, from the previous post and widely used for irritable bowel syndrome (IBS), improved his son's speech.  

Note that the research clearly shows that most autism has an "inflammatory" element, but the exact nature varies (for details read the work of Paul Ashwood at the MIND Institute).  There are very many different anti-inflammatory therapies that are reported to benefit specific people, but there are no unifying therapies that work for all. Some will inevitably make non-responders worse and potentially dramatically so, like L.reuteri ATCC PTA 6475, found in Biogaia Gastrus. Trial and error seems unavoidable if you want to find an effective therapy.

The research proposes Pioglitazone as a year round therapy for idiopathic autism.  In the phase 2 trial almost half of the children were deemed to be responders to the treatment; not a bad result. I think it also has potential as just a summertime add-on therapy. We used it last summer and now again this summer.

People with a diagnosis of mitochondrial disease, who also present with lethargy, might be another target group because of PGC-1 alpha.





Wednesday 8 July 2020

Immune modulatory treatments for autism spectrum disorder


Need a wizard, or your local doctor?

I was intrigued to come across a recent paper on immune modulatory treatments for autism by a couple of doctors from Massachusetts General Hospital for Children.  The lead author has interests in:

·      Autism spectrum disorders
·      Psychopharmacology
·      Developmental Disabilities
·      Williams syndrome
·      Angelman syndrome
·      Down syndrome

Apparently, he is an internationally-recognized expert in the neurobiology and neuropsychopharmacology of childhood-onset neuropsychiatric disorders including autistic disorder.  Sounds promising, hopefully we will learn something new.

The paper is actually a review of existing drugs, with immunomodulatory properties, that have already been suggested to be repurposed for autism. The abstract was not very insightful, so I have highlighted the final conclusions and listed the drugs, by category, that they thought should be investigated further.

All the drugs have already been covered in this blog and have already been researched in autism.

One important point raised in the conclusion relates to when the drugs are used.  Autism is a progressive condition early in life and there are so-called “critical periods” when the developing brain is highly vulnerable.

For example, Pentoxifylline has been found to be most effective in very young children.  This does not mean do not give it to a teenager with autism, it just means the sooner you treat autism the better the result will be.  This is entirely logical.

Some very clever drugs clearly do not work if given too late, for example Rapamycin analogs used in people with TSC-type autism.

Multiple Critical Periods for Rapamycin Treatment to Correct Structural Defects in Tsc-1-Suppressed Brain

Importantly, each of these developmental abnormalities that are caused by enhanced mTOR pathway has a specific window of opportunity to respond to rapamycin. Namely, dyslamination must be corrected during neurogenesis, and postnatal rapamycin treatment will not correct the cortical malformation. Similarly, exuberant branching of basal dendrites is rectifiable only during the first 2 weeks postnatally while an increase in spine density responds to rapamycin treatment thereafter.  

Back to today’s paper.


The identification of immune dysregulation in at least a subtype ASD has led to the hypothesis that immune modulatory treatments may be effective in treating the core and associated symptoms of ASD. In this article, we discussed how currently FDA-approved medications for ASD have immune modulatory properties.

“Risperidone also inhibited the expression of inflammatory signaling proteins, myelin basic protein isoform 3 (MBP1) and mitogen-activated kinase 1 (MAPK1), in a rat model of MIA. Similarly, aripiprazole has been demonstrated to inhibit expression of IL-6 and TNF-α in cultured primary human peripheral blood mononuclear cells from healthy adult donors.”

We then described emerging treatments for ASD which have been repurposed from nonpsychiatric fields of medicine including metabolic disease, infectious disease, gastroenterology, neurology, and regenerative medicine, all with immune modulatory potential. Although immune modulatory treatments are not currently the standard of care for ASD, remain experimental, and require further research to demonstrate clear safety, tolerability, and efficacy, the early positive results described above warrant further research in the context of IRB-approved clinical trials. Future research is needed to determine whether immune modulatory treatments will affect underlying pathophysiological processes affecting both the behavioral symptoms and the common immune-mediated medical co-morbidities of ASD. Identification of neuroimaging or inflammatory biomarkers that respond to immune modulatory treatment and correlate with treatment response would further support the hypothesis of an immune-mediated subtype of ASD and aid in measuring response to immune modulatory treatments. In addition, it will be important to determine if particular immune modulating treatments are best tolerated and most effective when administered at specific developmental time points across the lifespan of individuals with ASD.


Here are the drugs they listed:-

1.     Metabolic disease

Spironolactone
Pioglitazone
Pentoxifylline

Spironolactone is a cheap potassium sparing diuretic. It has secondary effects that include reducing the level of male hormones and some inflammatory cytokines.

Pioglitazone is drug for type 2 diabetes that improves insulin sensitivity.  It reduces certain inflammatory cytokines making it both an autism therapy and indeed a suggested Covid-19 therapy.

Pentoxifylline is a non-selective phosphodiesterase (PDEinhibitor, used to treat muscle pain.  PDE inhibitors are very interesting drugs with a great therapeutic potential for the treatment of immune-mediated and inflammatory diseases.  Roflumilast and Ibudilast are PDE4 inhibitors that also may improve some autism.  The limiting side effect can be nausea/vomiting, which can happen with non-selective PDE4 inhibitors.

I did try Spironolactone once; it did not seem to have any effect.  It is a good match for bumetanide because it increases potassium levels.

I do think that Pioglitazone has a helpful effect and there will be another post on that.

PDE inhibitors are used by readers of this blog. Maja is a fan of Pentoxifylline, without any side effects. Roflumilast at a low dose is supposed to raise IQ, but still makes some people want to vomit. The Japanese drug Ibudilast works for some, but nausea is listed as a possible side effect.


2.     Infectious disease

Minocycline
Vancomycin
Suramin

Minocycline is an antibiotic that crosses in to the brain.  It is known to stabilize activated microglia, the brain’s immune cells.  It is also known that tetracycline antibiotics are immunomodulatory.

Vancomycin is an antibiotic used to treat bacterial infections, if taken orally it does not go beyond the gut.  It will reduce the level of certain harmful bacteria including Clostridium difficile.

Suramin is an anti-parasite drug that Dr Naviaux is repurposing for autism, based on his theory of cell danger response.
  

3.     Neurology

Valproic acid

Valproic acid is an anti-epileptic drug.  It also has immunomodulatory and HDAC effects, these effects can both cause autism when taken by a pregnant mother and also improve autism in some people.

Valproic acid can have side effects. Low dose valproic acid seems to work for some people. 


4.     Gastroenterology

Fecal microbiota transplant (FMT)

FMT is currently used to treat recurrent Clostridium difficile infection and may also be of benefit for other GI conditions including IBD, obesity, metabolic syndrome, and functional GI disorders.

Altered gut bacteria (dysbiosis) is a feature of some autism which then impairs brain function.  Reversing the dysbiosis with FMT improves brain function.  


5.     Oncology

Lenalidomide
Romidepsin
  
Lenalidomide is an expensive anti-cancer drug that also has immunomodulatory effects.

Romidepsin is a potent HDAC inhibitor, making it a useful cancer therapy.  HDAC inhibitors are potential autism drugs, but only if given early enough not to miss the critical periods of brain development. 


6.     Pulmonology

N-acetylcysteine

Many people with autism respond well to NAC. You do need a lot of it, because it has a short half-life.


7.     Nutritional medicine and dietary supplements

Omega-3 fatty acids
Vitamin D
Flavonoids

Nutritional supplements can get very expensive.  In hot climates, like Egypt, some dark skinned people cover up and then lack vitamin D.  A lack of vitamin D will make autism worse.

Some people with mild brain disorders do seem to benefit from some omega-3 therapies.

Flavonoids are very good for general health, but seem to lack potency for treating brain disorders.  Quercetin and luteolin do have some benefits. 


8.     Rheumatology

Celecoxib
Corticosteroids
Intravenous immunoglobulin (IVIG)


Celecoxib is a common NSAID that is particularly well tolerated (it affects COX-2 and only marginally COX-1, hence its reduced GI side effects).

NSAIDS are used by many people with autism.

Steroids do improve some people’s autism, but are unsuitable for long term use.  A short course of steroids reduces Covid-19 deaths – a very cost effective therapy.

IVIG is extremely expensive, but it does provide a benefit in some cases. IVIG is used quite often to treat autism in the US, but rarely elsewhere other than for PANS/PANDAS that might occur with autism.


9.     Regenerative medicine

Stem cell therapy

I was surprised they gave stem cell therapy a mention. I think it is still early days for stem cell therapy.


Conclusion

I have observed the ongoing Covid-19 situation with interest and in particular what use has been made of the scientific literature.

There are all sorts of interesting snippets of data. You do not want to be deficient in Zinc or vitamin D, having high cholesterol will make it easier for the virus to enter your cells.  Potassium levels may plummet and blood becomes sticky, so may form dangerous clots. A long list of drugs may be at least partially effective, meaning they speed up recovery and reduce death rates. Polytherapy, meaning taking multiple drugs, is likely to be the best choice for Covid-19.

Potential side effects of some drugs have been grossly exaggerated, as with drugs repurposed for autism.  Even in published research, people cheat and falsify the data. In the case of hydroxychloroquine, the falsified papers were quickly retracted.

The media twist the facts, to suit their narrative, as with autism.  This happens even with Covid-19. Anti-Trump media (CNN, BBC etc) is automatically anti-hydroxychloroquine, and ignores all the published research and the results achieved in countries that widely use it (small countries like China and India). 

Shutting down entire economies when only 5-10% of the population have been infected and hopefully got some immunity, does not look so smart if you are then going to reopen and let young people loose.  They will inevitably catch the virus and then infect everyone else. Permanent lockdown restrictions, if followed by everyone, until a vaccine which everyone actually agreed to take, makes sense and living with the virus makes sense, but anything in between is not going to work. After 3 months without any broad lockdown, and allowing young people to socialize, most people would have had the virus and then those people choosing to shield could safely reemerge. The death rate with the current optimal, inexpensive treatment, as used in India or South Africa is very low, in people who are not frail to start with. Time to make a choice.  Poor people in poor countries cannot afford to keep going into lockdown, they need to eat.

What hope is there for treating a highly heterogeneous condition like autism, if it is not approached entirely rationally and without preconceptions and preconditions?  In a pandemic we see that science does not drive policy and translating science into therapy is highly variable.  The science is there for those who choose to read it.

I frequently see comments from parents who have seen some of the research showing that autism has an inflammatory/auto-immune component.  They ask why this has not been followed up on in the research.  It has been followed up on.  It just has not been acted upon.

Why has it not been acted on?

This missing stage is called “translation”.  Why don’t doctors translate scientific findings into therapy for their patients?

What is common sense to some, is “experimental” to others. “Experimental” is frowned upon in modern medicine, but innovation requires experimentation.

Many people’s severe autism is unique and experimental polytherapy/polypharmacy is their only hope.

The cookie cutter approach is not going to work for autism. 

Thankfully, for many common diseases the cookie cutter approach works just fine.

Do the authors of today’s paper, Dr McDougle and Dr Thom, actually prescribe to their young patients many of the drugs that they have written about?  I doubt it and therein lies the problem.  

Time for that wizard, perhaps? 

A few years ago I did add the following tag line, under the big Epiphany at the top of the page. 

An Alternative Reality for Classic Autism - Based on Today's Science

You can choose a different Autism reality, if you do not like your current one.  I am glad I did. I didn't even need a wizard.  

There are many immuno-modulatory therapies for autism that the Massachusetts doctor duo did not mention, but it is good that they made a start.